OKLAHOMASTATE UNIVRSITY
 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOLOFMECHANICALANDAEROSPACEENGINEERING

ECEN 4413/MAE 4053
Automatic Control Systems
Spring 2007
Final Exam

Choose any four out of five problems.
Please specify which four listed below to be graded:

1) \qquad ; 2) \qquad ; 3) \qquad ; 4) \qquad ;

Name : \qquad

E-Mail Address: \qquad

Problem 1:

The differential equation of a linear system is described by

$$
\frac{d^{3} y(t)}{d t^{3}}+5 \frac{d^{2} y(t)}{d t^{2}}+6 \frac{d y(t)}{d t}+10 y(t)=r(t)
$$

where $y(t)$ is the output and $r(t)$ is the input.
(a) Draw a state diagram for the system.
(b) Write the state equation from the state diagram. Define the state variables from right to left in ascending order.
(c) Find the characteristic equation and its roots.
(d) Find the transfer function $Y(s) / R(s)$
(e) Find the steady-state output when input is a unit step function, $r(t)=u_{s}(t)$.

Problem 2:

(a) Show that the input-output transfer functions of the two systems shown below are the same.
(b) Write the state-space equations of the system in $\operatorname{Fig}(a)$ as

$$
\frac{d x(t)}{d t}=A_{1} x(t)+B_{1} u_{1}(t), \quad y_{1}(t)=C_{1} x(t)
$$

and those of the system in $\operatorname{Fig}(b)$ as

(a)

(b)

Problem 3:

Given a nonlinear system described by

$$
\dddot{y}-\dot{y}-e^{a+1} y=3 \ddot{u}+4 \dot{u}+2 u,
$$

linearize the system about the equilibrium point and show the linearized state space representation in $\dot{x}=A x+B u, y=C x+D u$.

Problem 4:

Given the dynamic equations of a time-invariant system

$$
\frac{d x(t)}{d t}=A x(t)+B u(t), \quad y(t)=C x(t)
$$

where $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3\end{array}\right], \quad B=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \quad C=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$.
Find the matrices A_{1} and B_{1} so that the state equations for the same system are written as

$$
\begin{aligned}
& \qquad \frac{d \bar{x}(t)}{d t}=A_{1} \bar{x}(t)+B_{1} u(t) \\
& \text { where } \bar{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
y(t) \\
d y(t) / d t
\end{array}\right]
\end{aligned}
$$

Problem 5:

A linear time-invariant system is described by the following state equation

$$
\frac{d x(t)}{d t}=A x(t)+B u(t)
$$

where $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -4 & -3\end{array}\right], \quad B=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
The closed-loop system is implemented by state feedback, i.e., $u(t)=-K x(t)$, where $K=\left[\begin{array}{lll}k_{1} & k_{2} & k_{3}\end{array}\right]$; and k_{1}, k_{2} and k_{3} are real constants. Determine the constraints on the elements of K so that the closed-loop system is stable.

